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Abstract

This paper explores the potential for using remotely sensed data from a combination of commercial and open-sources,
to improve the functionality, accuracy of energy-use calculations and visualisation of carbon emissions. We present a
study demonstrating the use of LiDAR (Light Detection And Ranging) data and aerial imagery for a mixed-use inner
urban area within the North East of England and how this can improve the quality of input data for modelling standardised
energy uses and carbon emissions. We explore the scope of possible input data for both (1) building geometry and (2)
building physics models from these sources.

We explain the significance of improved data accuracy for the assessment of heat-loss parameters, orientation,
and shading and renewable energy micro-generation. We also highlight the limitations around the sole use
of remotely sensed data and how these concerns can be partially addressed through combinations with (1)
open-source property data, such as age, occupancy, tenure and (2) existing stakeholder data sets, including
building services and measured performance. We set out some of the technical challenges; addressed through data
approximation (considering data quality and metadata protocols) and a combination of automated or manual processing;
in the use, adaptation, and transferability of this data. We elucidate how the output can be visualised and be supported
by many of industry-standard CAD, GIS, and BIM software applications hence, broadening the scope for real-
world applications. We demonstrate the support of commercial interest and potential drawing evidence from
primary market research regarding the principal applications, functionality, and output.

In summary, we conclude on the benefits in the use of remotely sensed data for improved accuracy in energy use and
carbon emission calculations, the need for semantic integration of mixed data sources and the importance of

output visualisation.
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Background

Accurate alternatives for collecting information that ease
geometry models creation and calculation of energy per-
formance at individual dwelling or at neighbourhood
level are needed in order to improve quality of informa-
tion at disposal for architects, urban planners and
authorities. A number of building physics based models
have been developed in the past and some of the notable
include Building Research Establishment’s Housing
Model for Energy Studies (Shorrock and Dunster, 1997);
UK Domestic Carbon Model (Boardman et al. 2005) and
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Community Domestic Energy Model (Firth et al. 2010).
All these models have the same energy calculation engine
which is BREDEM (Building Research Establishment
Domestic Energy Model) and the Standard Assessment
Procedure (SAP) which is recommended by the Depart-
ment Of Business Energy And Industrial Strategy (BEIS)
in the UK as the main tool to underpin BREDEM for
assessing and comparing energy performance of dwellings.

Accurate energy baselines for domestic buildings and
neighbourhoods need that the models incorporate accur-
ate raw data which collection can be expensive and time
consuming. Generalised access to energy calculation
models requires a skillset which most of the urban plan-
ners haven’t yet acquired, and energy assessment usually
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relies on rough estimation of raw data making the energy
calculation inaccurate. In this context, this paper addresses
the issue of raw data availability and accuracy through the
development of new processes and techniques for data
collection and in particular the automated process of
capturing dimensions and footprint of dwellings through
the combination of OSL (Ordinance Survey and Landmap)
data and deployment of LiDAR and remote sensing as
means for aerial and terrestrial imagery. In addition, this
captured geometrical data is further integrated with open-
source and publically available data for a faster and more
accurate energy calculations integrating data from available
statistical sources, such as census data, deprivation and
neighbourhood statistics data from ONS (Office of National
Statistics), HEED (Homes Energy Efficiency Database) and
EHS (English Housing Survey). This is a multi-source novel
way of capturing and processing data for energy appraisal
and visualisation. The remainder of this paper discuss the
main technique used to capture data, dealing with errors
and data cleaning, integration with other data bases and
initial results from a case study.

The next section deals with remote sensing and LiDAR
technology.

Remote sensing & Lidar technology

Introduction to LiDAR

LiDAR is an active remote sensing technology. It allows
acquiring topographical information over surfaces at high
Level of Detail (LoD), for large-scale urban areas. This
data can be used for diverse aims, such as solar irradiance
estimation for PV (photovoltaic) calculation (Robinson
and Stone, 2004, Lukac et al., 2013), energy heating
demand estimate (Tooke et al., 2014), and building type
recognition and classification (Z. Lu et al., 2014) and this
might represent an important input for the SAP tool cal-
culation. The potential use of this technology is growing
in line with the increased demand for accurate and
updated data for energy calculation for dwellings and
urban energy planners and decision makers, in a way that
overcomes the limitations of plot cadastral and statistical
information (Hermosilla et al., 2012).

This paper incorporates and extends on the method-
ology already established in Mhalas et al. (2014), where a
framework that integrates visual systems, databases and
a decision support system to rapidly evaluate energy per-
formance of the dwellings is described. For this purpose,
the Standard Assessment Procedure (SAP) was selected
as a main element of the proof-of-concept. This paper
focuses on the accuracy and availability of information
that will be used for energy use using SAP as a method-
ology for energy calculation. Therefor the main thrust of
this paper is on data gathering, cleaning, processing and
use for accurate energy calculation.
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The remainder of this section discusses the methods and
techniques used in previous literature to pre-process, filter,
noise reduction and conversion of the acquired LiDAR data
and open source databases into usable object based formats
in Geographical Information Systems (GIS) software tools
ready to be used by energy calculation tools.

Previous literature in LiDAR data processing

Blaschke (2010) reviewed the state of the art of remote
sensing technologies for Object Based Image Analysis
(OBIA). The review highlighted the utilities, main limita-
tions, as well as problems to be solved and where the main
research has been focused, namely the high definition of
images transformation through Fuzzy and Neural algo-
rithm and other techniques. Tomljenovic et al. (2016) fur-
ther develops the concept of use of LiDAR for 2D and
2,5D model extraction.

The use of LiDAR, within the urban built and energy
related environment, has been mostly used to collect build-
ing physical features, assessment of the potential PV installa-
tion on rooftops and energy demand related studies (Lukac
et al,, 2013, Santos et al., 2014). Tooke et al. (2014) devel-
oped a methodology to utilise LIDAR data to aggregate a
range of residential building energy and urban parameters
and incorporate them with additional spatial data in order
to calculate baseline estimates for energy demand for neigh-
bouring regions within urban areas (see Fig. 1). The 3D
shapes and the year of construction are incorporated within
the statistically established energy performance data. Finally,
both of the boundary conditions are considered, physical
and environmental. The aim of the research is, based on this
methodology, to systematically estimate the global energy
demand for thermal uses in complete urban areas which is
at the moment based on rough estimates.

Lukac et al. (2013, 2014) developed a methodology for
determining a rating list of roofs’ surfaces in relation to
their solar potential and suitability for installing PV systems.
LiDAR data from the urban environment has been used to
obtain a 3D representation of the roofs. This data, along
with irradiance historical files, have been used to estimate
accurately the time dependent electricity generation from
Photovoltaic Modules (PVMs) and the solar inverter, taking
into consideration the non-linearity of the process and the
accurate shadowing calculation inferred by the topological
map created for the whole of urban area. These estimates
are then compared with measurements obtained from a
monitored PV plant. Jochem et al., 2009, Heinzel and Koch,
2011, Mongus and Zalik, 2012 presented methodology for
the pre-processing of the LIDAR data using State of the Art
classification methods. The obtained cloud points from
LiDAR capture are converted into the urban elements and
buildings’ rooftops surfaces, with a twofold objective; firstly,
to be able to accurately estimate the slopes and orientation
of the PVM on the rooftops, and secondly, to calculate the
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Fig. 1 Schema and workflow of Tooke et al. approach (2014)

instant shadowing during a whole year period (Lukac et al.,
2013, Yuan et al,, 2011). Lu et al. (2014) developed a meth-
odology to generate a building information accurate geoda-
tabase, which solves the limitations of obtaining data from
parcel datasets that are often not reliable and up to date.
Apart from the directly inferred geometrical data, the
approach eases building and boundary area classification.
The process includes three main tasks: (1) to delineate the
boundaries of buildings and elements within the data, (2)
to separate building data and (3) to classify the buildings
into pre-established types.

It was concluded from previous efforts and approaches
in building and neighbourhood energy modelling, that
integration of information coming from various data
sources is one of the greatest obstacles to tackle for
application of LiDAR data in urban and city planning
and operation. There is a challenge of managing urban
change within the paradigm of the ‘information city’
(Kraemer & King 1988). Municipalities and their part-
ners require a supporting information infrastructure that
supports a broad range of urban stakeholders to mutu-
ally understand and reinforce geophysical communities
within urban neighbourhoods and localities (Doheny-
Farina 1996). The city map and urban model remain the
most intuitive ways of structuring and accessing this
urban information.

Appropriate and accurate data is crucial for understand-
ing the viability of substantive urban energy systems and
decision-making procedural systems that manage the urban
system (Grossmann & Watt 1992). In effect, there are
complementary requirements from both technical and
non-expert urban stakeholders in the use of urban energy
information, its collection, analysis, sharing, and visualisa-
tion. Here, there is real potential for LIDAR data collected
remotely at neighbourhood or city scale to simultaneously
contribute to both, the technical and political decision-
making requirements for better data. Initially it is ideal for
information directly relating to building geometry. This
geometry or ‘property-based’ data can be the basis for

integration with wider and ‘softer’ aspects of urban plan-
ning and sustainability.

As summary from the previous literature review, it is pos-
sible to generate an estimation of an individual property en-
ergy use based on the attributes of the building supported,
but not limited to cadastral plots (age / method of con-
struction, geometry and services) and ‘standardised’ behav-
iour of the typical occupants. It is these property attributes
that are well suited to the integration of LiDAR data on
geometry with other open-source and publically available
data sets that record the building performance characteris-
tics. For example, the use of open-source database on the
age of construction of the property, the use of stakeholders’
own asset management database, systems upgrades to
social housing as part of ‘decent homes programme’.

This research presents a case study using a similar
approach to the techniques demonstrated in Tooke et al.
(2014). It presents the process to collect and pre-process
data with the aim of estimating more accurately, the global
energy demand for thermal uses in complete urban areas.
Unlike in the Tooke’s approach, the calculation for the
baseline estimates of energy demand is based on SAP
methodology shown in Mhalas et al. (2014). Database and
assumptions are adapted to the case study. Visualisation
and integration of the generated data offers a wider range
of possibilities compared to the aforementioned ap-
proaches, combining and merging the results of the model
with open source GoogleMaps and GoogleEarth. Figure 2
shows the workflow of the proposed approach for estimat-
ing Energy Demand, integrating different data sources.

The next section introduces the case study that was con-
ducted in this research to demonstrate the techniques and
methodologies used to process data for energy calculation.

Methods

Capturing geometry data: a case study

The objective of this section is to introduce a real life
case study to demonstrate the procedure of capturing,
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Fig. 2 Baseline Energy Performance Assessment procees map

processing and using LiDAR information. A case study
is selected in the inner area of west end of Newcastle
upon-Tyne in the UK. This case study was part of
SEMANCO (Semantic Tools for Carbon Reduction in
Urban Planning), a European project co-funded by the
European Commission within the 7th Framework
Programme (http://semanco-project.eu/). The case study
is based on an area which contains a variety of housing
typologies, including significant multi-story and multi-
occupancy properties for a mix of different ownership
patterns and tenures. The research project presented in
this paper commissioned the LiDAR scanning of the
project area for the purpose of calculating energy rating
and ways in which these ratings can be improved
through a more informed refurbishment programmes.
The rationale was to overcome some of the costs and
technical limitations of existing two-dimensional spatial
data sets; for example, Ordnance Survey Landline / Mas-
ter map that only held building ground floor footprints
and no accurate building heights. Moreover, for the pur-
pose of energy calculation and to augment the geometric
information from LiDAR. This research has investigated
the potential use of a variety of publically accessible and

open-source data sets such as age of property, construc-
tion methods, type and age of boilers, etc.

The key intention for LiDAR data use was to support
the estimation of urban energy use where there is a re-
quirement for a high degree of accuracy in the building
geometry. In addition, the commissioned LiDAR data in-
cluded the necessary permission to integrate it with
other data sets as part of an online energy modelling
and decision-support tool. The rights to share this data
and demonstrate the potential functionality when it
linked to other data sets, is one of the initial outputs of
this research work. Effectively, it allowed the research
team to maintain an open-ended approach to the use
and adaptation of the data set without being time-
limited or legally restricted to the scope of use.

Data specification and data collection

The supply and collection of the LiDAR data was per-
formed by a professional commercial provider (Blue Sky
Company PLC). However, many factors and issues are
realised regarding the specification of the data collection.
Most significantly is the lack of any standard
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specification for the format, resolution and cleaning of
the data, the following section discusses this.

Data conversion and input

The provided data used CityGML (City Geography Markup
Language) and COLLADA (COLLAborative Design Activity)
formats that are readable within many different standard
software packages. Inner city is surveyed over a square kilo-
metre using two separate scans that provided a terrain model
and ‘partially’ auto-rectified structures. Typically, LIDAR data
contained more than required details of specification in
certain areas and significant gaps regarding surface materials
and varied dimensions of these solid / opaque surfaces.
There are some recent demonstrations of the applica-
tion around the detail available and transferring or
‘tracing’ (Kimpton et al. 2010) CAD polylines over a
polygon surface model / point cloud data. This is ef-
fectively a manual task to reduce the level of detail
within the model. It turns a set of point cloud data
into closed polygons — polygons with properties suit-
able for adding attributes and for visualisation. A
similar approach is required for the neighbourhood
scale to make the data usable for the purpose of esti-
mating the energy use for individual properties.

The process of inferring 2D and 2,5D-classified informa-
tion from the point cloud data through processing is time
consuming and depends greatly on technical skills. How-
ever, the use of software such as ArcGIS (a complete,
cloud based mapping platform) can automate these tasks
easily through the implementation as modules, to obtain
the features as the building footprint, height and shape.
However, there is sparse development of this semi-
automatic data processing, which depends a great deal on
the density of points for the images at disposal. According
to Henn et al. (2013) in the UK, the density is 0.5 points/
m?, 1 points/m> for Germany and 8 points/m?> for the
Netherlands. In the latest years, resolution available data
has improved considerably, but at the time the survey was
done, the density of data at disposal was at first instance
not enough to conduct accurate identification. That can
be the case in a majority of cases. Combination of usual
5 x 5 m? resolution files with LIDAR 4 points/ m?, as for
the conducted survey in the case study, means a signifi-
cant improvement in accuracy and data consistency.
Ultimately, the data has two significant geometry values
that need to be maintained as input measurements into a
Reduced data Standard Assessment Procedure (RASAP) or
estimated SAP calculation process as the normal UK
energy model. The input geometry is (a) the shape of the
property; measured as the gross external footprint of the
individual dwelling unit; and (b) the height of the prop-
erty. Together, these input parameters allow an accurate
calculation of heat-loss parameters around the extent of
internal heated living space relative to the exposed surface
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areas as made up from the ground floor, external walls
and roof. While there are limited opportunities for chan-
ging the shape (simplifying) and size (reducing) of homes
to affect the heat loss parameters (Friedman 2005), build-
ing fabric interventions (typically internal or external
insulation) can improve the thermal efficiency of specific
building elements to reduce the heat loss. In most cases,
improvement work to the building fabric will also be
dependent upon the same geometry in terms of cost of
treatment per square metre. Further interventions relate
to possible upgrades to building services or the provision
and connection to renewable and / or decentralized energy
systems. These can likewise be attached as attributes to the
property-based data that is consistent with similar scoping
and qualitative assessments of stakeholder requirements
(National Refurbishment Centre 2012) and those respon-
sible for property management and maintenance, there is a
practical focus on cost-effective and technically trusted
approaches to refurbishment that requires good evidence
base on accurate data.

In order to reach the point of using accurate building
geometry data we need to identify any significant errors
inherent within the original format of the commercially
provided data and implement some data editing. Most of
the errors reflect to inconsistencies of the polygons,
differences to cadastral existing information, vegetation
and unrecorded elements and structures. Figure 3 shows
key steps in data handling processes.

Errors within data collection

To acquire useful data sets for energy monitoring, sev-
eral types of initial data errors needed to be dealt with in
advance. These errors relates to almost exclusively issues
of ‘bad geometry arising from a combination of the
angle of scanning of the terrain and properties together
with the level of ‘noise’ within the LiIDAR data. The ‘noise’
included errors from building overhangs, shadows, trees /
vegetation and became more pronounced in areas
where there were more complex geometries and
structures. Figure 4 highlights some of LiDAR data
issues and errors.

The best strategy in dealing with the various geometry
errors is to create two separate data sets that hold
discrete input data. The first deals with building foot-
prints and the second with building heights. This strat-
egy has proven most effective in a more complex
process. Bremer et al. (2016) showed a process for which
data is processed in three steps, from coarse Digital Sur-
face Model (DSM) to fine DSM and making use of the
close range domain given by the fine Digital Terrain
Model (DTM) and the LiDAR points cloud. This infor-
mation is checked against CityGML to obtain the final
polygonal information in a 2.5D data file. The approach
taken in this case study consists of checking the
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an example of data error correction.

Data cleaning and editing
The first step in handling data is to pre-treat data by
eliminating any basic errors/ outliers. Editing is

carried out using the edit functions within ESRIs
ArcGIS (see Fig. 6).

Overlapping polygons in the commercial data set are
cleared of errors as they represent two properties occu-
pying the same building footprint. These are merged
and then split along an estimated property boundary.
Furthermore, there were issues with sections such as
disconnected polygons or ‘gaps’ in between terrace prop-
erties. These had their vertices snapped to match.
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There are several instances of vertices existing within
polygons that seemingly picked up variations in roof
structures, chimneys / ventilation or in some instances
in larger multi occupancy properties and non-residential
units mechanical and engineering services plant on the
roof. These are merged into single polygons with all ex-
traneous vertices deleted. The result represents an ac-
curate footprint data set.

Identifying individual properties
The next step was to separate the contiguous polygons /
structures into individual properties. It is useful that the
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LiDAR data is effective in picking up changes in external
building heights. In an area of exaggerated topography
in the west end of Newcastle where contiguous proper-
ties / terraced housing step up and down the slope, this
suggests division between properties. However, in look-
ing at the details, it failed to make a distinction between
property boundaries because this boundary is in reality
the thickness of a party wall between the individual
properties. The change in roof heights coincided with
the end (or in some instances the roof overlap) of the
party wall and not the middle of the party wall. This
becomes apparent when rear extensions have to be
attributed to a particular property polygon. This could
only be corrected manually using ‘best-guess’ informa-
tion (Fig. 7) based on equidistant polygons to create
properties of equal sizes as a typical property typology
or using external information to property boundaries.

It is accepted that additional errors are re-introduced
at each of these discrete stages within data cleaning and
editing. Maintaining two separate data sets holding the
footprint and height details separately is the best strategy
to reduce the number of stages in data handling and
thus reducing the potential of re-introducing any new
errors when handling data.
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Results and discussion

Integration with other data sets

Thinking around the value of city models is rapidly chan-
ging in response to the power of computing but more sig-
nificantly, the quantum of big data that now exists digitally.

We are entering into a world where everything is data.
Planning has to deal with the scope of different sources of
supporting evidence each using a variety of methodologies.
There has to be an understanding of limits, unpredictability
and allied to this are the procedural issues around irration-
ality, objectivity and political / cultural perceptions and def-
initions of qualitative aspects of behaviour, knowledge,
attitudes and perceptions. Maps are clearly a useful way to
explore data. Nonetheless, ultimately they are didactic tools.
They are abstractions of reality and are designed primarily
for exploration and understanding at strategic scales and
early stages of decision-making. They will contain errors
and have to be treated as tools for understanding rather
than predicting energy usage.

Porter & Neale (2000) acknowledged the development of
the ‘map’ or ‘model’ from physical to digital, a paradigm shift
in urban design and planning ‘... that hold(s) the potential
for allowing the designer to move directly from concept to
full scale construction’. In order to achieve this, the develop-
ment of new methodologies to support the analysis and in-
tegration of large data sets has to be implemented (Aiden &
Michel 2013). Real ‘big data’ can be considered a re-
placement for intuition or guesswork where there are
strategies in place for harvesting and mining every
possible source (Baumgartner et al. 2012).

LiDAR data use for energy performance evaluation with
SAP engine

Precise image data and aerial imagery is needed in order
to conduct accurate neighbourhood energy performance
evaluation. As well, use of published databases such as
Homes Energy Efficiency Database (HEED), household
surveys such as English House Condition Survey (EHCS),
census and the Office of National Statistics (ONS) are
used as data sources for input for the core SAP calculation
engine as detailed in Mhalas et al. (2014).

Basing on this research, we realised that one major
condition for the city model development, i.e. Newcastle
Cruddas Park building areas (Fig. 10) included in the use
case, was that it should support the demonstration of
the baseline energy modelling SAP based software tool,
with the variety of building and dwelling archetypes. To
do that, accurate individual geometries of buildings
needed to be put in place, in order to allow correct iden-
tification when geo-referencing and establishing links to
the cadastral and other Database information sources. In
the first instance, due to the resolution and also poten-
tially the nature of the conveyed drive-by surveys, avail-
able data was not sufficiently consistent for these
purposes, raising concerns related to the data processing
regime and date of data capture, i.e. a number of build-
ings were missing from the map; the height of some
buildings appeared to be updated in the MIMAS (2012);
some of the extruded 3D blocks did not correspond to
buildings at all. Additionally knowledge of the site, images
and visual inspection analysis allowed the recognition of
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other discrepancies, which meant a barrier for the defin-
ition of the energy performance map.

The selected process followed to generate and classify
the individual building geometries according to the pre-
defined archetypes is found in the IDEFO map (Fig. 8),
evolved from previous research found in Mhalas et al.
(2014). The use of LiDAR was of help in resolving the
aforementioned definition barriers in the Geometry and
Physics components in Fig. 7. It allows the correct iden-
tification of individual buildings and a georeferenced
location of them, granting integration of the COLLADA
files with CityGML and open-source resources as
Google Earth Pro. Both SHP vector files and CityGML
files are superimposed on aerial map adding a layer to
the open-sourced one.

This precise imagery serves as input for the SAP sub-
models for the specific building. This consists of extract-
ing information for footprint, floor height, exposed
perimeter wall area, and roof-area as well as opaque and
window area and materials (U-values). Once the LiDAR
file for a specific neighbourhood is in place, we use OS
MasterMap layer and OS MasterMapTopography Layer
to identify the buildings, and Visual Basic for Applications
(VBA) to add information related to building physics and
usage. ArcGIS features attribute replication for different
buildings. Once the different buildings units and attributes
have been defined ArcGIS developer allows SAP algo-
rithms to be formulated into calculation tools, which will
result in energy demand, heating and cooling demand,
electricity demand, PV and Thermal solar generation. The
process to obtain neighbourhood Baseline Energy Per-
formance Assessment integrating the LiDAR data is
shown in Fig. 2.

Visualisation of this data can be either be obtained with
the aerial survey map, creating tailored layers to show the
different output values, or integrate them into open-
source platform layers as GoogleMaps or GoogleEarth.
Both options need to create the layers using the KML
layer creation. In that way visualisation of neighbourhood
extended attributes becomes available for the platform
users, and becomes a valuable source of information for
urban planners, architects, and public services.

Stakeholder data and user-defined mapping

Big data tends to have veracity as well as volume,
velocity, and variety. One of the key support tasks is to
organise, structure and make sense of data. This is gen-
erally accomplished using one or more of the industry
standard software packages, ArcGIS, AutoCAD, Sketchup
and to a lesser degree, Google Earth. Additionally, there is
an open-source mapping software and data, for example
in the ESRI sponsored crowd-sourced mapping (Medeiros,
2013). Building energy data is just another element of this
big data. Building energy use and carbon emissions have
to be understood in the wider policy context and the com-
plexity of the real world. There is a requirement to pro-
vide for users the ability to export, import, and connect
with their own datasets to build on the functionality of the
basic building geometry. Moreover, the significance of
having remotely sensed data is that it provides accurate
building geometry and other information. While initially,
this geometry has value as input data for the calculation of
the energy efficiency of buildings, this can be modified to
incorporate a rage of additional functionalities when data
is shared online and is linked to the individual property
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addresses for a more accurate measurement. For example,
for the calculation of property refurbishment and renova-
tion costs, building geometry is linked to a cost database
or cost estimations.

Furthermore, the availability of an open-source three-
dimensional data is both limited and controlled and remark-
ably the same case study area of Newcastle in represented in
Google Earth and effectively uses the same data from the
same commercial supplier (see Figs. 9 and 10). Yet the func-
tionality of this is limited to basic visualisation and the vir-
tual exploration of the urban environment. The export
functions, if any, are limited to two-dimensional aerial im-
agery, creating a level of frustration in achieving the level of
accuracy, which is available through open-source data com-
pared to the knowledge of the existence of accurate geom-
etry. Yet this data is still currently just a collection of shapes
without any property specific tagging. However, looking be-
yond the visualisation of the data are extractable geom-
etry models that can be used for a variety of
purposes, including acting as input data for more de-
tailed urban design and architectural modelling.

Discussion on the importance of visualising
energy data and future work

Urban planning and regeneration is complex as it brings
together a broad range of stakeholders, as a mix of tech-
nical professionals and many different non-expert stake-
holders that have their own personal and organizational
experiences. Urban planning and management has be-
come a two-way educational mutual learning process
(Wals, 1996) that have connections between many con-
sultation / participation exercises. These urban planning
processes require the development of evidence base and
information provision that is accessible and understand-
able to the broad scope of project stakeholders and in
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particular visual energy use. Indeed, Castells (2000) sug-
gested that the appropriate sharing of urban data assists
with the reform and legitimization of local democracy
and governance. Data, including energy data, with all of
its errors is best shared in a manner that is accessible to
multiple stakeholders and is understandable to non-
technical users, extractable and editable for technical users.

The SEMANCO project reported in this paper has pro-
vided an online platform that provides access to widely dis-
persed energy related data about cities stored by many
organisations. Thus, the platform supports improved energy
analysis based on the assessment of existing data rather than
estimates. This is performed using semantic data modelling
that uses information stored in different places with different
formats to create a multi-level energy model of an urban
area. This can be further used to analyse the energy per-
formance of individual buildings, neighbourhoods, districts
and regions. Figure 11 shows a screen shot of the developed
SEMANTIC tool for the Urban Energy Model.

The SEMANCO platform includes a set of tools to
visualise and analyse a city’s energy data. The visualisa-
tion combines interactive 3D models, tables and dia-
grams to display energy related data. Madrazo et al.
(2013) stressed the importance of the visual three-
dimensional interface as a common language for a range
of stakeholders becomes more apparent.

Although it is a significant way short of BIM standards,
this is potentially the next step in the use of LiDAR infor-
mation. Format and specifications in line with Construc-
tion Operations Building Information Exchange (COBie)
and can be useful at the earliest stages of a design or con-
struction plan of works. At present ISO 1006-2 sets the
specification standards for ICT in construction projects
and includes a detailed ontology for construction and
building elements. This standard also sets out the design
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responsibilities between different professional stakeholders
and the minimum requirements for technical / digital
information change between the professionals. The stan-
dards overlap with COBie standards for data exchange,
which sets out the specification of element properties in
the form of an industry standard data language with speci-
fication properties. For the SEMANCO project, strategies
are consigned to convert LiDAR datasets into accurate
urban consistent information data to be used in COBie
compliant BIM tools as well as specific energy related
information fields have been merged to obtain an energy
related ontology (Corrado et al,, 2015). This is achieved by
creating a formal vocabulary according to the Ontology
Web Language specifications to assess the energy per-
formance of an urban area.

As an increasing range of software packages use COBie
standards for data input and integration, the challenge is
to allow the use of remotely sensed LiDAR data on build-
ing geometry to be useful and timesaving as input data
into these design software packages. Here the best ver-
sions are mostly automated from Revit or similar SOLIBRI
compliance checking software. When remotely sensed
data can be used with confidence at an early project stage
and form part of the initial information exchange it will
have significant new functionality. It has to be remem-
bered that while most design packages and protocols are
intended for new construction, around 80% of all con-
struction projects still include existing structures for reno-
vation, refurbishment, adaptation, or conversion (Itard &
Meijer 2009). An accurate representation of existing struc-
tures with a usable database containing the attributes and
parameters of these structures will be hugely valuable
addition to the initial business planning stages of many
urban planning and regeneration projects.

It is also valuable to address compatibility of this meth-
odology to parallel efforts in the direction of the W3C and
Linked Building Data group to generate city models inte-
grating data from disparate data sources such as LiDAR,
photogrammetry and other survey methods considering
OWL (Web Ontology Language). This points out the
direction to follow, going beyond the building bound
COBie and IFC models.

Conclusion

This paper presents a methodology to integrate remote
sensing methodology and LiDAR techniques to visualise
and calculate urban energy use in neighbourhoods, mak-
ing use of proprietary and open source software tools.
The paper emphasises the process to improve consistency
of data for the assessment of energy use and calculation in
urban settings and analyses the different barriers and
problems raised in the undertaken research and solutions
to them. The paper highlights the limitations around the
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current ways in which neighbourhood energy analysis and
calculations are conducted and how these can be addressed
through combinations with open-source property data and
existing stakeholder data sets, including building services
and measured performance. The paper shows how remote
sensing data and LiDAR information can be captured,
cleaned, processed and used.

This paper puts the thrust in ways to ease city models
generation integrating LiDAR survey maps, especially
considering neighbourhood energy analysis and bench-
marking. In sum, the process improves the aspects of the
model generation, process, analysis and visualisation,
making use of widespread cloud based software tools.
Unlike existing approaches, the possibilities open by the
research shown in this paper enhances the use and hand-
ling of neighbourhood energy analysis and the integration
with other visualisation tools enables not proficient users
to access tailored and versatile information.
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